
Rangeland Condition Monitoring Asssement and Projection (RCMAP) 1985-2021 Factsheet 

1. Description: 
In collaboration with the Bureau of Land Management (BLM), the U.S. Geological Survey (USGS) 
has produced annual maps of fractional component cover for 1985-2021 (37 years). 
Components mapped: annual herbaceous, perennial herbaceous, total herbaceous, sagebrush, 
non-sagebrush shrub, total shrub, litter, bare ground, and tree canopy cover.  

2. Intended Use: 
Annual fractional cover maps can assist land managers and scientists to monitor changes to 
vegetation composition, evaluate past management practices, target future improvements, 
determine locations of critical wildlife habitat, assess impacts of climate change and interannual 
variation, and appraise landscape health and fragmentation 

3. Training data are obtained from various sources (Table 1, Figure 1). 
 
Table 1. Training data for RCMAP fractional component time-series. 

Source n Notes Spatial Extent Temporal 
Extent 

RCMAP High-Resolution 
Sites Degraded to 30-m 

56,426,952  Data for each high-resolution site is 
predicted from 60-120 ocular 

observations, collected at the 2-m 
imagery resolution (see Rigge et al. 

2020) 

331, ~15 x ~15km 
sites 

2006-2017 

RCMAP Landsat-Scale 
Plots 

8,691 Field observations located between 
high-resolution sites 

Average of 2, 30-
m transects or 

ocular estimation 

2013-2021 

BLM Analysis Inventory 
and Monitoring (AIM) 

28,971 Bureau of Land Management (BLM 
AIM, 2021) 

Average of 3, 50-
m transects 

2011-2021 

BLM Landscape 
Monitoring Framework 

(LMF) 

16,674 Bureau of Land Management Average of 3, 50-
m transects 

2004-2019 

LANDFIRE Public 
Database 

183,861 Curated from several sources: USFS 
Vegetation and Fuel Plot Data, USGS 

National Gap Analysis Program (GAP), 
NPS Inventory and Monitoring (I&M), 
State Inventory Data (see LANDFIRE, 

2022) 

Various methods 1985-2015 

Total 56,665,149   1985-2021 

 
 
 
 
 
 
 
 
 
 
 



Figure 1. RCMAP training data distrubution 

 
4. Independent Data: 

A) Topographic: slope, aspect, position index, elevation 
B) Landsat Imagery: two median pixel composites for each year: leaf-on, to represent peak 
vegetation growth and leaf-off, senesced (i.e., brown) conditions (see Table 2 for dates) by 
mapping region (Figure 2). The composites are further cleaned by identifying pixels with less 
than 3 clear observations, which tend to be phenologically inconsistent and/or have 
cloud/shadow/snow contamination and by considering the relevant synthetic dates (see C) in 
the median value calculation of these locations. 
C) CCDC-Synthetic Imagery: Five months of Continuous Change Detection and Classification 
(CCDC) synthetic images per year, predicted using models fit to the historical observations for 
each pixel (see, Zhu et al. 2015). Synthetic images are targeted to preferentially capture the 
early growing season (see Table 2 for dates). 
D) Landsat Imagery Indices: Normalized Difference Water Index (NDWI), Built-up index (BDI),  



Soil Adjusted Vegetation Index (SAVI), tassel cap indices: greenness, wetness, and brightness for leaf-on 
and leaf-off median composites for each year. 

 
Table 2. Imagery composite dates by mapping region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Median Composites  Monthly Synthetic 

Region Leaf-on Leaf-off  Leaf-on Leaf-off 

Mediterranean California Dec. 1 – May 30 Jun. 1 – Oct. 1  Jan., Feb, 

Apr. 

Jun., Sep. 

Great Basin and Columbia Plateau Mar. 15 – Jun. 

15 

Jul. 1 – Nov. 01  Mar. - Jun. Sep. 

Northern Rocky Mountains 
June 15 – Aug. 

25 

Apr. 15 – May 15, 

Sep. 1 – Oct. 15 

 
Jun.- Aug Sep., Oct. 

Northern Great Plains  Apr. 1 – Jun. 30 Jul. 15 – Nov. 1  Apr. - Jul. Sep. 

Mojave, Sonoran, and Chihuahuan Deserts  Jul. 20 – Oct. 15 Mar. 1 – Jul. 1  Aug., Sep. Mar., Apr., Jun., 

Jan. 
Southern Mountains Jun. 1 – Aug. 15 

Apr. 1 – May 1, 

Sep. 1 – Nov. 1 

 
Jun. - Aug. Sep., Oct. 

Colorado Plateau and Southwest Tablelands Jun. 1 – Aug. 30 Sep. 15 – Dec. 1 
 

Jun. - Aug. Sep., Nov. 

Pacific Northwest May 1- Jul. 20 Sep. 15 – Dec. 1  Mar. - Jul. Oct. 



Figure 2. RCMAP mapping regions 

 
 

5. Model and Post-Processing 
We used neural network models optimized with Keras Tuner that are four layers deep, 128 
neurons wide, and with a 20% dropout rate between each layer. For each mapping region, we 
developed a single neural network model to predict all components. We compared our 
regression neural network with the results from previous versions of RCMAP that used Cubist: 
finding all else equal, error rates were reduced by 5-7%. 

We want our products to represent a combination of empirical data and logic-based rules. 
Therefore, post-processing models are utilized to limit noise and accurately capture post-fire 
component cover values. Post-processing has been improved with updated fire recovery 
equations stratified by ecosystem resistance and resilience (R and R) classes (Maestas and 
Campbell 2016).  



 
6. Validation results 

Maps are rigorously validated using field data not included as training (i.e., independent) with 
data from long-term monitoring sites, and by assessing model fit to training data. Our 
independent data consists of 1) 1,880 points, each specifically designed to represent a single 
Landsat pixel, collected from 2013-2020, and 2) long-term monitoring data in southwest 
Wyoming at 126 plots observed 12 times between 2008 and 2021. The spatial-temporal 
correlation (n = 1,137) across all 126 plots showed robust correlations for all components, with 
an R2 of 0.62 for bare ground (RMSE = 11.7%) and 0.47 for shrub cover (RMSE = 8.0%) and 
average R2 of 0.42 and RMSE of 8.93 across components.  
 
Next, we compared RCMAP data to independent validation sites (n = 1,880) collected from 
2013-2020 (Table 3). Correlations between RCMAP and independent validation sites were again 
robust across all components, with an R2 of 0.75 for bare ground (RMSE = 13.5%) and 0.40 for 
shrub cover (RMSE = 10.3%) and average R2 of 0.53 and RMSE of 10.4 across components.  
 
Pooling all independent data (long-term monitoring plus independent sites, total n = 3,017): 
Bare Ground - R2 0.74, RMSE 12.9, Herbaceous - R2 0.66, RMSE 11.5, Litter - R2 0.38, RMSE 8.5, 
Shrub - R2 0.40, RMSE 9.6, Sagebrush - R2 0.38, RMSE 7.2, Annual Herbaceous - R2 0.56, RMSE 
10.1.  
 
Table 3. Summary of validation results at independent and BLM AIM/LMF sites. 

Data Metric 
Annual 
Herb. 

Bare 
Ground Herb. Litter Sagebrush Shrub Tree 

Independent R2 0.56 0.75 0.70 0.37 0.41 0.40 n/a 

AIM/LMF R2 0.30 0.60 0.56 0.03 0.42 0.35 0.66 

Independent RMSE 10.1 13.5 12.4 8.6 7.3 10.3 n/a 

AIM/LMF RMSE 15.1 24.4 21.7 12.0 8.5 11.0 7.4 

 
 
We compared RCMAP data to BLM AIM and LMF data (n = 45,132) collected between 2004 and 
2021. Correlations between RCMAP and AIM/LMF data were again robust across all 
components, with an R2 of 0.60 for bare ground, R2 of 0.66 for tree, and 0.35 for shrub cover and 
average R2 of 0.38 and RMSE of 14.3 across components. 
 
Finally, we conducted a cross-validation of predictions against training data at high-resolution 
training sites using a random sample of 100,000 points. Cross-validation correlations included an 
R2 of 0.89 for bare ground (RMSE = 9.7%) and 0.66 for shrub cover (RMSE = 8.3%) and average R2 
of 0.76 and RMSE of 7.3 across components. Bare Ground - R2 0.89, RMSE 9.7, Herbaceous - R2 
0.82, RMSE 7.9, Litter - R2 0.70, RMSE 5.5, Shrub - R2 0.66, RMSE 8.3, Sagebrush - R2 0.66, RMSE 
4.1, Annual Herbaceous - R2 0.75, RMSE 5.4, Tree - R2 0.83, RMSE 9.7. 
 
Changes observed in both the field and RCMAP data were typically gradual, within-state, 
changes which are most difficult to resolve, which were often successfully captured. It is 
important to consider that all accuracy assessments described above are designed to evaluate 
single-pixel level correspondence. Due to fine-scale landscape heterogeneity this is the most 



rigorous approach, and most applications looking at broader spatial scales would tend to lower 
error relative to this analysis.  
 

7. Caveats 
CCDC-synthetic data rely on harmonic models to fit the temporal profile of all available clear 
Landsat data. The algorithm can predict Landsat surface reflectance for any dates. The quality of 
the model is dependent on the number of clear observations, with increased likelihood of 
simple models near the end of the time-series (Zhu et al. 2015). Discrete change events are 
detected as breaks in the temporal profile if their RMSE is more than two times RMSE for six 
consecutive observations, which creates the potential for a temporal lag for the phenomena to 
manifest on the synthetic imagery. We do not consider synthetic images to be exact proxies of 
additional “real” Landsat observations, rather include the data to represent the inter- and intra-
annual phenological patterns, which are strongly related to component cover. 
 
The nature of our modeling approach tends to result in bias to underestimating change between 
periods rather than overestimating change. Most training data was derived from high resolution 
predictions (Table 1) of component cover which dramatically increases the number and spatial 
extent of training data. However as these are modeled products, they do contain error (Table 4). 
Assessments of component predictions at the high-resolution scale demonstrate average 
accuracy (r) by component ranging from 0.90 to 0.97 and absolute error of 1.81 to 4.65%. Error 
also exists in the other sources of training: BLM AIM, etc. 
 
Table 4. Test accuracy of high-resolution (2-m) scale predictions of component cover  

Component Absolute Error r 

Bare Ground 4.65 0.97 

Herbaceous 4.26 0.94 

Litter 3.13 0.91 

Shrub 4.55 0.94 

Sagebrush 2.66 0.90 

Annual Herbaceous 1.81 0.94 

 
RCMAP products are designed to reflect the ground conditions under the peak of the growing 
season (i.e., greenest conditions). However, due to image availability and timing of training 
observations, this may not always be the case. Users are encouraged to evaluate differences 
between the largest possible units acceptable to their analysis (e.g., compare the population of 
pixels between two pastures instead of between two pixels) to minimize the impact of error. 
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